欢迎进入梦飞科技!服务热线:4006-888846 企业QQ:800001630

梦飞科技 > 中国IDC > 大数据 > 大数据资讯 > 深度学习不是AI的未来

深度学习不是AI的未来

现在每一个人都正在学习,或者正打算学习深度学习,它是目前人工智能诸多流派中唯一兴起的一个。各个年龄阶段的数十万人都在学习着免费和收费的深度学习课程。太多的创业公司和产品的命名以“深度”开头,深度学习已然成了一个流行语,但其真正的落地应用实际上却很少。绝大多数人忽略了一个事实:深度学习只占机器学习领域的1%,而机器学习又只占人工智能领域的1%。而实际中的绝大多数任务则是用余下99%的知识技术来处理的。一个“只会深度学习的专家”并不是“人工智能专家”。

3

深度学习并不是人工智能的同义词!由于谷歌、Facebook等巨头公司宣传人工智能工具时主要谈的就是深度学习,甚至只谈深度学习,因此大众误以为所有的人工智能新的篇章都(将)由深度学习书写。然而,真实情况并非如此。决策树算法,比如 XGBoost没有成为头条,却在很多Kaggle表格数据竞赛中默默地击败了深度学习。媒体暗示AlphaGo的成功全部归于深度学习,但实际上它是蒙特卡洛树搜索+深度学习,这表明深度学习单枪匹马很难取胜。很多强化学习的任务是通过神经进化的 NEAT 算法(通过增强拓扑的进化神经网络)得到解决的,而不是反向传播算法。人工智能领域存在着“深度误传”。

我并不是说深度学习没有解决问题:它令人印象深刻。树和其他算法并没有完胜深度学习,并且在某些任务上深度学习无法被取代,但是我希望未来一些非深度学习系统可被(重新)发现以击败深度学习。或许能解释目前深度学习决策的黑箱问题。同样我也希望能读到探讨“灾难性遗忘”问题的深度学习文章,它是指在学习新知识时快速遗忘先前已学习知识的倾向,并且需要每天对抗“过拟合”。关于“智能”:深度学习会简单相信所给的训练数据,而不去理解什么是真或假、现实或想象、公平或不公。人类也会误信假新闻,但只是在某种程度上,甚至孩童都知道电影是虚构的,不是真实的。

20 年前,每个人都在学习 HTML,这个手动编写网页的标记语言当时被认为足以成就一个互联网亿万富翁。和其他人一样,我学习了每一项看起来有用的技术,如 HTML、移动app和深度学习,并且我希望大家在今后的人生都一直学习新事物。事实上,你一生中不能只学习一项技术。即使你学习了深度学习,你也不会一辈子了解人工智能。1995 年 HTML 开始过时,无法满足需求,取而代之的是 CSS、Java 和服务器语言。同样地,深度学习有一天也会过时,并且无法满足需求。现在大多数流行的手机 APP 根本用不到 HTML,那么谁又会知道未来的人工智能APP是否用得到深度学习呢?

不过实际上,深度学习是 1980 年代的技术,比HTML还老:由于有了更多的训练数据,1970 年代的“带有隐藏层的神经网络”得到了更好的结果,被重新命名为深度学习,之后被大肆炒作。1992年我简要地查看了一些神经网络的源代码,以及分形算法和细胞自动机。正如绝大多数人一样,当时我并没有选择深度学习,只是把它当作毫无实际价值的学术数学难题。相反,我重点学习视频游戏的 3D 技术、互联网技术等等,因为它们可以即刻获得结果。但是我们都错了,深度学习借助大数据可以大有作为!2015 年的 Deep Dream 简直令我着迷,接着是GAN等等。不过,深度学习并不是人类可以创造的完美人工智能科技的终点。

数十年来,“古老”的深度学习技术已被广泛研究和更新以更准确地解决更多任务,但是没有一个深度学习网络结构(卷积、RNN、RNN + LSTM、GAN 等)可以解释其自身的决策。无疑深度学习在未来还会解决更多的问题,取代更多的工作,但不太可能解决所有的问题,或者保持惊人的进步以对其所作决定的公正性进行合理的解释。

1

深度学习无法理解哲学家柏拉图与亚里士多德

未来人工智能应探索其他的新方法,或者被忽视的旧方法,而不仅仅是深度学习。深度学习的一个局限是把数据中最常见的内容作为真理,把统计学上较稀少、或与较常出现的内容相反的东西看作谬论。深度学习的公正性并非来自其自身,而是人类筛选和准备的深度学习数据。深度学习可以阅读并翻译文本,但不是以“人类的方式”。如果使用超过100本书训练深度学习模型:40本书告诉它仇恨、战争、死亡和摧毁如何是坏的,60本书告诉它希特勒的纳粹思想是好的,那么该模型最终会成为100%的纳粹!


(责任编辑:梦飞科技)

分享按钮
相关文章