1. 梦飞科技 > 中国IDC > 大数据 > 大数据应用 >
  2. 就能比无用的大量数据发挥更大的作用(3)

就能比无用的大量数据发挥更大的作用(3)

本文介绍了大数据基本特征及国防大数据示范项目,并提出国防领域数据扩大与发展过程中需要注意的事项。第一、大数据的应用必须夯实大量数据甄别/存储、培养数据专业人才等基础。第二、大数据的应用必须源于明确的、具体的目标。第三、大数据应用需能够感知危险,并加以有效应对。

数据用的基本前提是大量数据的存储。不过,在推进大数据应用项目的过程中,我们需优先考虑是否拥有支撑大数据分析的“优质的大量数据”。问题是大数据用的后来居上者——公共部门并不是基于积累的数据来考虑如何尝试大数据方法论,而是先大步追随“大数据应用”的宣言口号,然后再去寻找相关数据。显然,这是本末倒置,把主要的和次要的、本质的和非本质的关系弄颠倒了。在这种背景下,很多人错误地认为,大数据是体量大、结构单一的数据集合,不需对数据的性质、特性、数据的出处等进行深入研究,只要将尽可能多的数据整合到一起,就可以在较短时间内生成能够获取有意义结果的大数据。事实上,大数据的描述价值与数据规模并不呈正比例关系。数据分析中有“垃圾进,垃圾出(Garbage in, garbage out)”的说法,即无论数据的量有多大,只要输入的数据 (in-put)是错误的,就只能得出错误的结果(out-put)。与此相反,即便数据的规模相对较小,只要积累的是优质数据,就能比无用的大量数据发挥更大的作用。

下面围绕韩国国防部组织实施的大数据应用前期研究工作中的“军营安全预测模型开发”项目展开分析。该项目的目的是基于国防研究院(KIDA)新兵人格调查(NMPI:New Military Personality Inventory)的调查数据、陆军团行政信息系统中的生活信息、陆军宪兵队调查资料中的事故信息、调查本部国防帮助热线的谈话内容等,提供各部队的各阶段军营安全指数,以此来防范重大恶性事故的发生。问题是对于这一预测模型的过度自信及对统计数据的滥用和误用,有可能会带来很多副作用。举例来讲,拿到军营安全指数危险报告的部队指挥官,有可能会将工作重点放在筛查危险人物上,从而忽略打仗这一部队的根本职能。此外,为了歪曲和控制军营安全指数,有可能对不适应军营生活的新兵重新进行人格调查,或向团行政信息系统输入与实际情况完全不同的生活信息。这种对数据的随意歪曲和篡改,势必会酝酿更大的事故或更大的灾难。

图1.大数据应用情景分析方向

此外,从分析技术层面来讲,还能为“以当前技术能否进行分析、随着数据增加能否提高预测准确度”等的判断提供有效支持。对上述事项的决策结果,能够使大数据应用分析的综合情景具体化。可以讲,大数据应用情景可保证项目的整个过程是一定的、具有持续方向性的,这对于结果的有效生成会起到重要作用。从图1可以看出,大数据分析目的对大数据应用情景的决定过程产生重要影响。

大数据分析与应用的目的是项目各阶段进行重要决策与状况判断的基本依据。首先,需根据“明确的大数据应用目的”来判断数据库中什么数据是有用的优质数据。随着韩国国防领域计算机化、网络化的加快推进,各种信息系统整体涌现,越来越多的数据在相应的数据库中不断积累。当然,这些数据在各自信息系统中运行是不会有什么大的问题。但是,从大数据综合分析角度来看,有必要着眼于“能否生成有意义的结果、是否是可预测数据”的分析目的,重新进行评估判断。若这一目的不明确,那么随着大量异种数据的累加,分析的基础将会彻底动摇。

大数据应用是否有副作用和危险?

我们还可以假设一下针对个别官兵危险性的预警预测模型。通常,这种预测模型准确度能达到90%,VPS租用 国内服务器,就可以认为是相当优秀。包括大数据在内的所有预测模型,预测实现100%的准确率是根本不可能的。被预警预测模型识别为事故隐患的个人,往往会因模型的准确性难以消除危险烙印,这反过来又可能会引发部队内部新的矛盾或使矛盾加深。

大数据应用目的会对“数据的种类和质量是否适当、应选择何种数据分析技术和数据分析模型”等产生重要影响。举例来讲,明确的大数据分析目的可以成为“以现有数据能否进行分析、是否有必要进一步收集数据”等的判断基准。

当前,大数据的应用范围正逐步扩大到自动翻译、医院诊疗、微尘预测/预防、气象预测、提高电力网效率等各个领域。今天,大数据已超出单纯的IT技术范畴,成为第4次工业革命的核心动力。正因为如此,许多国家的公共部门和民间企业对此进行了大量的投入。韩国也以2013年开放公共数据和启动21个大数据示范项目为起点,从政府层面正式拉开大数据时代的帷幕。国防领域也积极适应这一发展趋势,2013年开始着手大数据应用研究,并基于研究结果从2015年起推进国防大数据示范项目。随着大数据热潮席卷而来,在包括国防在内的所有公共领域,“大数据”和基于此的“第4次工业革命”正在成为最受关注的焦点。

(来源:网络)

本站所有文章和图片均由根据搜索引擎转码而来,只为让更多读者欣赏,本站不保存图片及数据,仅作学习展示。遵循互联网避风港原则,如有网站内容疑问,请通知站长

扫描二维码

关注梦飞科技最新资讯